Радиационно-стойкие микросхемы от компании «Миландр»

Сергей ШУМИЛИН shumilin.sergei@milandr.ru Павел ЛЕОНОВ leonov.pavel@milandr.ru

В статье представлены основные результаты, полученные компанией ЗАО «ПКК Миландр» в области разработки радиационно-стойких микросхем, а также рассмотрены основные подходы к их созданию.

Введение

В настоящее время космическая радиация является одним из важнейших эксплуатационных факторов, влияющих на работоспособность радиоэлектронной аппаратуры космического применения, а также комплектующих ее полупроводниковых приборов и интегральных микросхем. Это во многом определяет актуальность тематики радиационных эффектов в материалах электронной техники, радиационно-индуцированной деградации полупроводниковых приборов и интегральных микросхем и определения показателей надежности и радиационной стойкости радиоэлектронной аппаратуры в условиях воздействия ионизирующего излучения космического пространства.

Ионизирующее излучение (ИИ) приводит к различным нежелательным эффектам в интегральных схемах (ИС), наиболее существенными из которых считаются:

- параметрические отказы вследствие деградации электрических характеристик элементов ИС по мере накопления дозы ИИ (Total Ionizing Doze, TID);
- одиночные обратимые эффекты, основными из которых считаются изменения логических состояний элементов ИС и ячеек памяти микросхем запоминающих устройств (Single Event Upset, SEU), эффекты переходного процесса (Single Event Transients, SET), эффекты функционального прерывания (Single Event Functional Interrupts, SEFI);
- одиночные отказы, основной причиной которых считается эффект тиристорной защелки (Single Event Latch-up, SEL).

Причинами деградации электрических характеристик интегральных схем при воздействии накопленной дозы становится образование радиационно-индуцированного заряда в диэлектрических структурах (поверхностные радиационные эффекты) и радиационных дефектов внутри кристаллической структуры (объемные структурные повреждения), что приводит к возрастанию токов утечки, сдвигу порогового напряжения и снижению удельной крутизны МОП-транзисторов.

Одиночные обратимые эффекты возникают от воздействия отдельных высокоэнергетических ядерных частиц, ионов с линейными потерями энергии более 0,5 МэВ·см²/мг и протонов с энергией более 10 МэВ.

Радиационно-индуцированные утечки в КМОП, выполненных по технологии КНИ («кремний на изоляторе»), возникают в паразитных структурах вблизи слоя изоляции STI (Shallow Trench Isolation).

Характер изменения пороговых напряжений от дозы сильно зависит от типа транзисторов и мощности дозы ИИ. Накопление положительного заряда в подзатворном окисле приводит к отрицательному сдвигу пороговых напряжений *n*- и *p*-канальных транзисторов.

Удельная крутизна МОП-транзисторов зависит от подвижности носителей в каналах. Воздействие ИИ приводит к уменьшению эффективной подвижности носителей как *n*-канальных, так и *p*-канальных транзисторов. Экспериментально установлено, что подвижность зависит от плотности поверхностных состояний, зависимость плотности поверхностных состояний от дозы определяется интенсивностью излучений.

Методы устранения или уменьшения влияния радиационных эффектов, в конечном счете приводящих к повышению радиационной стойкости ИС, достаточно хорошо известны и разнообразны. Различаются технологические, функциональные, схемотехнические и топологические методы.

Технологические методы подразумевают использование специальных технологических маршрутов, например КНИ; введение в технологический маршрут дополнительных слоев, в частности глубокого N-кармана (DNW) или эпитаксиальных слоев. Кроме того, для увеличения стойкости к накопленной дозе целесообразно применять технологии с меньшими проектными нормами, так как при уменьшении минимального размера элементов сокращается толщина подзатворного диэлектрика и соответственно увеличивается стойкость транзисторов к TID. Использование технологии КМОП КНИ является эффективным средством борьбы с эффектами SEL. Это позволяет электрически изолировать между собой *n*- и *p*-канальные транзисторы, тем самым устранить возможность образования паразитной тиристорной структуры.

Топологические методы — это применение различных форм затворов транзисторов (кольцевые, Н-типа, А-типа и другие), предотвращающих утечки по границе раздела тонкого подзатворного окисла и слоя диэлектрической изоляции, использование охранных колец для устранения утечек между элементами интегральной схемы и топологическое размещение блоков на верхнем уровне кристалла.

Топологическое размещение блоков особенно сильно влияет на количество множественных сбоев в микросхемах памяти. Выделение ячеек памяти, принадлежащих одному биту (разряду) слова, в отдельные блоки позволяет не только уменьшить вероятность множественных сбоев, но и в результате проводить коррекцию информации меньшими аппаратными средствами. Охранные кольца, кроме устранения межэлементных утечек, выполняют функцию контакта к подложке, шунтируют ее сопротивление и тем самым препятствуют включению тиристорной структуры.

Для противодействия одиночным сбоям предусмотрены схемотехнические и функциональные методы, среди которых наибольшее распространение получило резервирование на уровне функциональных блоков, например метод тройного резервирования (Triple Modular Redundancy, TMR); использование сбоеустойчивых логических элементов и ячеек памяти, в том числе DICE-триггеров; применение проверок битов четности и различных корректирующих кодов, в частности кода Хэмминга, и т.п.

Технология и библиотеки

В качестве базовых технологий были выбраны КМОП технология с минимальными проектными нормами 0,35 мкм и техноло-

Рис. 1. Топология элемента AND в библиотеках DCELLS_RH и DCELLS_RT

Таблица 1. Сравнение результатов реализации процессорного ядра в различных технологиях	
--	--

Библиотека	DCELLS_RH	DCELLS_RT	MK180RT	HCMOS8D	SOI_025_6M	CE018
Производитель	Миландр	Миландр	Элвис Микрон	Микрон	Микрон	TSMC
Технология	180 нм КНИ КМОП	180 нм КНИ КМОП	180 нм КМОП	180 нм КМОП	250 нм КНИ КМОП	180 нм КМОП
Площадь ядра ARM CORTEX-M4F	13,8 мм ²	9,2 мм ²	5,8 мм²	12,1 мм²	25 мм ²	4,1 мм²

гия КМОП КНИ с минимальными проектными нормами 0,18 мкм. На базе технологии КМОП КНИ были разработаны две библиотеки цифровых ячеек стандартной логики и триггеров DCELLS_RH и DCELLS_RT. Библиотека DCELLS_RH о DCELLS_RT. Библиотека DCELLS_RH о позволяет обеспечить работоспособность схемы для дозы более 500 крад. Библиотека DCELLS_RT основана на линейных *n*-канальных транзисторах и поддерживает работоспособность схемы для дозы свыше 100 крад, но при этом имеет более компактные размеры ячеек. Вид топологии ячеек двухвходового И для обеих библиотек приведен на рис. 1.

Как видно на рис. 1, применение кольцевых транзисторов приводит к увеличению размера ячейки, что в конечном итоге сказывается на размере всего кристалла. Сравнение результатов реализации процессорного ядра ARM Cortex-M4F в различных библиотеках приведено в таблице 1. Кроме цифровых библиотек, разработан большой набор аналоговых IP-блоков и различных блоков памяти. Все разработанные аналоговые блоки выполнены с использованием кольцевых *n*-транзисторов, что позволяет обеспечить их корректную работу на значительных уровнях накопленной дозы. Общее описание элементов библиотеки IPблоков представлено в таблице 2.

Применение данных библиотек и наработок позволило создать микросхемы микроконтроллеров 1886ВЕ8У и 1986ВЕ8Т, микросхемы памяти 1645РТ2У, 5576РТ1У, 1645РУ5У, 1645РТ3У, обладающие повышенной стойкостью к воздействию радиации. В настоящее время ведется разработка ряда других специализированных стойких микросхем.

Микроконтроллер 1886ВЕ8У

Микроконтроллер 1886ВЕ8У является стойкой версией ранее разработанного 8-разрядТаблица 2. Описание разработанных аналоговых IP-блоков

ІР-блок	Описание
РМК	Набор вспомогательных элементов для управления питанием, преобразователи уровня, изолирующие ячейки и т.п.
IO	Набор площадок ввода/вывода и площадок питания
RAM	Набор различных блоков памяти от 64×40 до 8 кбит×40
ROM	Блок масочного ПЗУ 2 кбит×40
OTP	Блок однократно программируемой ПЗУ типа антифьюз размером 8 кбит×40
LDO	Встроенный LDO-регулятор на 1,8 В с нагрузочной способностью до 200 мА
Capless LDO	Встроенный LDO-регулятор на 1,8 В с нагрузочной способностью до 100 мА, не требующий внешних конденсаторов
PLL	Блок умножения тактовой частоты
RC OSC	Встроенный RC-генератор
Quartz OSC	Генератор для подключения внешнего кварцевого резонатора
ADC 12	12-разрядный АЦП со скоростью преобразования 500 квыб/с
ADC 10	10-разрядный АЦП со скоростью преобразования 50 квыб/с
DAC 12	12-разрядный ЦАП
SpaceWire PHY	Аналоговый приемопередатчик интерфейса SpaceWire со скоростью передачи до 100 Мбит/с
Ethernet PHY	Аналоговый приемопередатчик интерфейса Ethernet со скоростью передачи до 10 Мбит/с
USB PHY	Аналоговый приемопередатчик интерфейса USB со скоростью передачи до 12 Мбит/с

Таблица 3. Основные характеристики микроконтроллера 1886ВЕ8У

Параметр	Значение		
Процессорное ядро	8 бит RISC серии 1886		
Тактовая частота	35 МГц		
Память программ	4 кбит×16 ПЗУ масочного типа с ЕСС		
Память данных	902×8 c ECC		
АЦП	10 разрядов, 8 каналов, до 50 квыб/с		
USART/LIN	1		
CAN	1		
Таймер	16 разрядов		
ШИМ	10 разрядов		
Выводов Ю	26		
Питание	4,5-5,5 B		
Встроенный LDO-регулятор	Есть		
Температура	-60+125 °C		
Корпус	H14.42-1B		
Накопленная доза	100 крад		
Стойкость к воздействию ТЗЧ	Проводятся испытания		

ного микроконтроллера 1886ВЕ5У. Вместо ЕЕРROM-памяти программ используется масочное ПЗУ, программируемое при производстве кристаллов. Основные характеристики микросхемы представлены в таблице 3.

Отладка программного обеспечения для микроконтроллеров 1886ВЕ8У производится на аналоге 1886ВЕ5У и затем переносится в заказную микросхему.

Микроконтроллер 1986BE8T

Микросхема 1986BE8Т является стойким 32-разрядным микроконтроллером на базе процессорного ядра ARM Cortex-M4F. Микросхема имеет большой набор аналоговой и цифровой периферии. Основные характеристики микроконтроллера представлены в таблице 4.

Для всех микроконтроллеров разработаны демонстрационно-отладочные наборы и примеры ПО. Отладка программного обеспечения для микроконтроллеров 1986ВЕ8Т может Таблица 4. Основные характеристики микроконтроллера 1986ВЕ8Т

Параметр	Значение
Процессорное ядро	ARM Cortex-M4F
Число ядер	1
Тактовая частота	100 МГц
Память программ	Однократно программируемое ПЗУ типа антифьюз 128 кбайт с ЕСС
Память ОЗУ	32 кбайт с ЕСС
Питание	3-5,5 B
Корпус	4244.256-3
Встроенный LDO-регулятор	Есть
Встроенный RC-генератор	8 МГци 40 кГц
Внешний генератор	2 шт., от 1 до 30 МГц
Внешний часовой генератор	1 шт., 32,768 кГц
АЦП	2 шт., 12 разрядов, 500 квыб/с, 16 внешних каналов
ЦАП	2 шт., 12 разрядов
Ethernet MAC 10/100 Мбит	1
Ethernet PHY 10 Мбит	1
SpaceWire MAC 100 Мбит/с	1
SpaceWire PHY 100 Мбит/с	1
FOCT P 52070-2003	2
FOCT 18977-79	8 приемников и 4 передатчика
CAN	1
UART	1
SPI	1
DMA	1
Внешняя системная шина	Есть
Выводов Ю	160
Накопленная доза	500 крад
Стойкость к воздействию ТЗЧ	Проводятся испытания

Рис. 2. Топология ячейки памяти микросхем 1645РТ2У и 5576РТ1У

производиться в среде Keil. Программирование внутренней однократно программируемой памяти осуществляется стандартными средствами отладки приложений и не требует каких-либо специализированных программаторов.

Микросхема однократно программируемого ПЗУ 1645РТ2У

Микросхемы 1645РТ2У представляют собой однократно программируемые ПЗУ с параллельным интерфейсом с информационной емкостью 256 кбит и организацией 32 кбит×8. Микросхемы изготовлены по стандартной КМОП-технологии с минимальными проектными нормами 0,35 мкм. Стойкость к накопленной дозе и полное отсутствие тиристорного эффекта обеспечивается с помощью кольцевых транзисторов и охранных колец. В качестве ячейки памяти используется элемент «антифьюз» (antifuse), основанный на пробое подзатворного диэлектрика. Топология ячейки памяти представлена на рис. 2. Применение такой ячейки позволяет исключить потерю записанной информации при достаточно высоких уровнях воздействия радиации. Для защиты от множественных сбоев разряды информационного слова распределены по разным блокам матрицы.

Микросхема однократно программируемого ПЗУ 5576РТ1У

По аналогичной технологии и с использованием тех же подходов разработана и серийно выпускается микросхема 5576РТ1У, представляющая собой однократно программируемое ПЗУ для конфигурирования ПЛИС с информационной емкостью 1 Мбит. В процессе испытаний установлено, что радиационные сбои происходят в периферийных блоках микросхем; сбоев и потери информации в матрицах элементов памяти в микросхемах 1645РТ2У и 5576РТ1У не наблюдалось.

Микросхема статического ОЗУ 1645РУ5У

Микросхема 1645РУ5У представляет собой асинхронное статическое оперативное запоминающее устройство с информационной емкостью 4 Мбит и организацией 512 Кслов по 8 бит, изготовлена по технологии КМОП КНИ с минимальными проектными нормами 0,18 мкм. Использование данной технологии помогло полностью исключить возникновение тиристорного эффекта, а совместно с топологическими решениями — кольцевыми конструкциями транзисторов и введением охранных колец для устранения межэлементных утечек — позволило получить высокий уровень стойкости к воздействию ионизирующего излучения.

В качестве ячейки памяти для микросхемы 1645РУ5У использовалась шеститранзисторная ячейка с *p*-канальными транзисторами выборки и кольцевыми *n*-канальными транзисторами, позволяющая

Рис. 3. Топология ячейки памяти микросхемы 1645РУ5У

максимально сократить утечки и обеспечить повышение уровня сохранности информации при воздействии ИИ. Топология ячейки памяти микросхемы 1645РУ5У представлена на рис. 3.

Микросхема однократно программируемого ПЗУ 1645РТЗУ

Микросхема 1645РТЗУ — однократно программируемого ПЗУ с произвольной выборкой, информационной емкостью 2 Мбит с перестраиваемой организацией 128 Кслов по 16 бит или 256 Кслов по 8 бит, — изготовлена по той же КМОП КНИ-технологии с минимальными проектными нормами 0,18 мкм, что и микросхема 1645РУ5У, с использованием аналогичных топологических решений. В рамках стандартных технологических процессов была разработана ячейка памяти с элементом программирования с использованием структуры антифьюз (antifuse), основанного на пробое подзатворного диэлектрика. Топология ячейки памяти микросхемы 1645РТЗУ представлена на рис. 4.

Как и в микросхемах 1645РТ2У и 5576РТ1У, для защиты от множественных сбоев разряды информационного слова в микросхемах 1645РТ3У и 1645РУ5У распределены по разным блокам матрицы.

Характеристики радиационной стойкости микросхем памяти представлены в таблице 5.

Электрические и эксплуатационные параметры радиационностойких микросхем памяти, разработанных в ЗАО «ПКК Миландр», приведены в таблице 6.

Таким образом, в настоящее время компания ЗАО «ПКК Миландр» может предложить потребителям вышеуказанный перечень радиационно-стойких микросхем. Имеющийся задел в виде разработанных моделей стойких транзисторов, характеризованных библиотек, ПО, обеспечивающего проверку топологии с учетом требований и правил разработки микросхем с повышенной стойкостью к воздействию

Таблица 5. Характеристики стойкости микросхем памяти					
Параметр	1645РУ5У	1645PT2Y	5576PT1Y	1645РТЗУ	
Суммарная накопленная доза, рад (Si)	≥1,3×10 ⁶	≥10⁵	≥5×10 ⁵		
Стойкость к воздействию ТЗЧ по отказам по тиристорному эффекту: пороговые ЛПЭ: L _{i.th.TЭ,KO} , МэВ-см ² /мг сечение насыщения KO, см ² /бит	≥61 ≤8×10 ⁻⁸	≥66 ≤1,5×10 ⁻¹¹	≥68 ≤3×10 ⁻⁸	D1 0000000000000000000000000000000000	
Стойкость к воздействию ТЗЧ: пороговые ЛПЭ: L _{i,th.OC} , МэВ-см ² /мг сечение насыщения ОС: σ _{is.OC} , см ² /бит	1 ≤5×10 ^{−8}	1 ≤5,7×10 ^{−12}	≥40 ≤10,6×10 ⁻⁸	I Іроводятся испытания	
Стойкость к воздействию протонов: пороговая энергия: Е _{ТН.ОС} , МэВ сечение насыщения: σ _{SP.OC} , см²/бит	15 ≤3×10 ^{−14}	20 ≤3,1×10 ⁻¹⁸	не опред. не опред.		

Рис. 4. Топология ячейки памяти микросхемы 1645РТЗУ

радиации, и полученный опыт позволяют компании расширять номенклатуру радиационно-стойких микросхем, а также разрабатывать микросхемы с более высокими уровнями стойкости к воздействию различных радиационных факторов. За более подробной информацией по представленным в настоящей статье микросхемам, а также по вопросам их приобретения можно обращаться в отдел технической поддержки или отдел маркетинга ЗАО «ПКК Миландр» (www.milandr.ru).

Параметр	1645PУ5У	1645PT2Y	5576PT1Y	1645РТЗУ
Тип микросхемы	созу	оппзу	ОППЗУ для конфи- гурирования ПЛИС	оппзу
Информационная емкость	4 Мбит (512 кбит×8)	256 кбит (32 кбит×8)	1 Мбит	2 Мбит (128 кбит×16 или 256 кбит×8)
Напряжение питания, В	3-5,5	3-3,6	3-3,6	3-5,5
Время выборки адреса, U _{сс} = мин, CL = 30 пФ, нс, не более	20	100	-	100
Ток потребления в режиме хранения, мА, не более	5	5	5	5
Динамический ток потребления, мА, не более	120	50	40	100
Рабочий температурный диапазон, °С	-60+125	-60+125	-60+125	-60+125
Корпус	5134.64-6	5134.64-6	5134.64-6	5134.64-6

Таблица 6. Электрические параметры микросхем памяти