

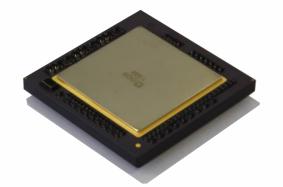
Микросборки, технологические возможности по изготовлению МСБ и их применение

Афанасьев Станислав Владимирович

Казань, 11 августа 2016 г.

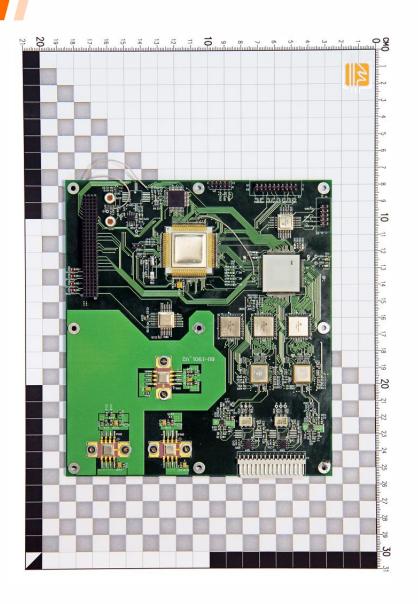
Замена элементной базы модулями «габарит в габарит»

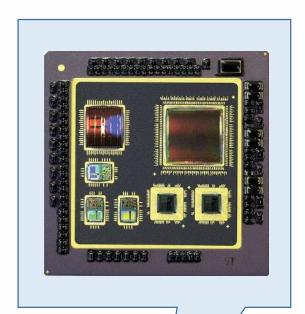
- сохранение конструкции и схемы коммутации всего изделия в целом
- замена нескольких однотипных блоков на один, но с разным ПО внутри каждого блока
- модернизация путём модернизации ПО
- возможность самодиагностики и диагностики нагрузки
- снижение стоимости разработки за счёт унификации элементной базы
- повышение надёжности
- повышение ресурса работы за счёт снижения количества контактов
- уменьшение номенклатуры применяемых микросхем

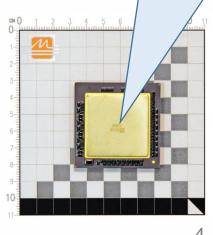

Замена элементной базы микросборками, изготовленными на современном технологическом уровне

<u>Технологии изготовления</u> <u>оснований:</u>

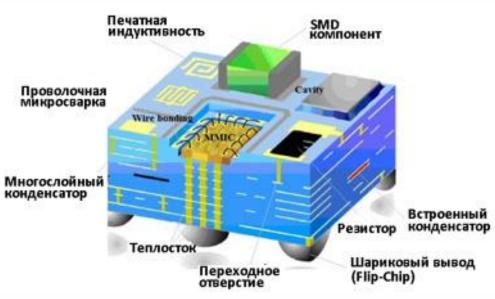
- Высокотемпературная керамика
- Низкотемпературная керамика
- Многослойные печатные платы

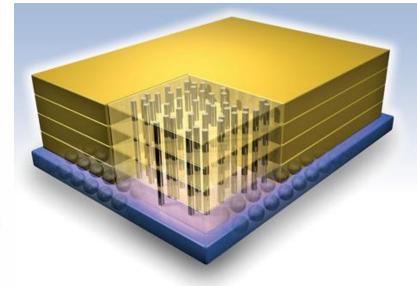



Технологии сборки микромодулей:


- WireBond (разварка проводниками)
- FlipChip (поверхностный монтаж)
- снижение габаритов и веса модулей
- снижение стоимости разработки за счет унификации элементной базы;
- модернизация путём модернизации ПО
- повышение надёжности
- повышение ресурса работы за счёт снижения количества контактов
- уменьшение номенклатуры применяемых микросхем

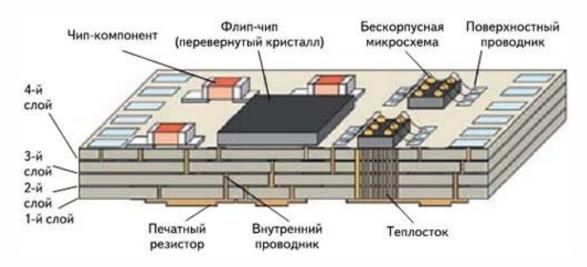
От печатных плат к микросборкам





Освоение технологий корпусирования

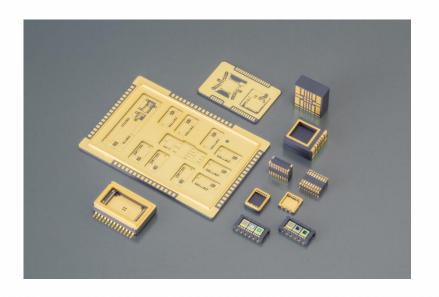
2.5D Кристалл на подложке 3D TSV Кристалл на кристалле



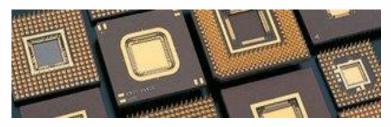
Микросборки на LTCC- керамике

Преимущества использования подложек из LTCC-керамики для производства микросборок:

- Возможность размещения пассивных компонентов внутри подложки → возможность 3D-интеграции, значительное снижение размеров устройств
- Большое количество рабочих слоёв
- Хорошие электрические характеристики и стабильность до миллиметровых длин волн
- Высокая механическая стабильность и сохранение линейных размеров
- Низкий КТР
- Высокая теплопроводность
- Герметичность и возможность высокотемпературной пайки


Основные конструктивные характеристики МСБ на основе LTCC керамики

Параметр	Значение		
Габариты	от 5х5 мм до 120х120 мм		
Толщина	0,4-1,2 мм, 3%		
Количество слоев	4-15		
Минимальная ширина проводников	100 мкм		
Минимальный зазор между проводниками	100 мкм		
Минимальный шаг между проводниками	250 мкм		
Диаметр переходных отверстий	150 мкм		
Минимальный размер резисторов	1x1 мм		
Сопротивление резисторов	от 10 Ом до 1 МОм, 3%		
Шаг контактных площадок под сварку	250 мкм		
Шаг контактных площадок под пайку	400 мкм		
Шаг контактных площадок монтаж FC	250 мкм		
Шаг выводов BGA, LGA	1,27 мм		



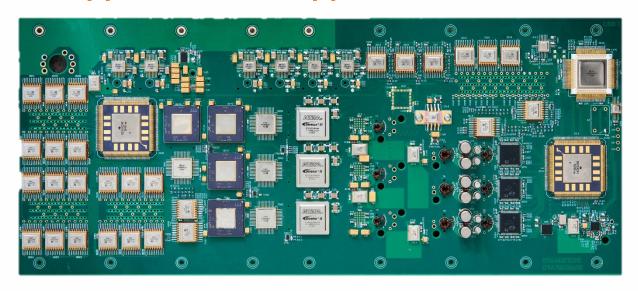
Микросборки на НТСС-керамике

Параметр	HTCC	LTCC	Si	FR4
Теплопроводность, Вт/м*К	20	5	125	0,3
Прочность на изгиб, МПа	400	200	100	400
Коэффициент теплового расширения, 10 ⁻⁶ K ⁻¹	7	5-6	3	16
Интеграция пассивных компонентов	Нет	Да	Да	Нет



Микросборки на НТСС-керамике

Высокоскоростной многокластерный интегрированный модуль цифровой обработки сигналов

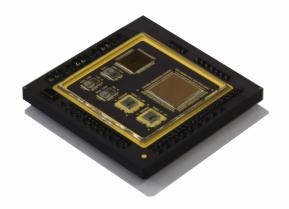


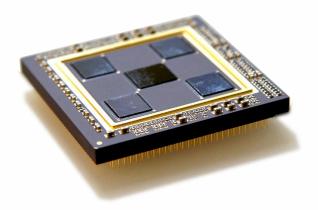
Технические характеристики интегрированного модуля:

- Количество кластеров: до 5;
- Количество DSP-процессоров в кластере: 4;
- Скорость обмена между DSP-процессорами в кластере 450 Мбайт/с;
- Скорость обмена между кластерами: 100 Мбайт/с;
- Потребляемая мощность: не более 150 Вт;
- Тактовая частота DSP процессора: 450 МГц;
- Суммарная производительность модуля: 100 ГФлопс;
- Поддерживаемые операционные системы хоста: ОС Linux, ОС Windows 7;
- Интерфейсы: PCI-Express, Ethernet 10/100;

СТРУКТУРА ПРОДАЖ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ «МИЛАНДР» В 2015 ГОДУ

Технические характеристики

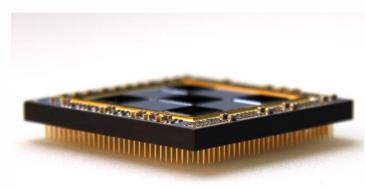

- Количество DSP-процессоров 1967ВН028 4 шт.
- Тактовая частота ядер процессоров 400МГц
- Количество каналов АЦП 3 шт.
- Разрядность АЦП 14 бит
- Частота дискредитации АЦП 96 МГц
- Количество каналов синтеза зондирующих сигналов 3
- Частота дискредитации ЦАП 768 МГц
- Пиковая производительность процессоров 9.6 ГФлопс



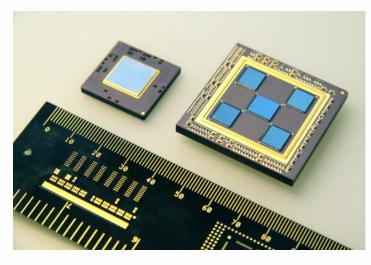
Микросборки на основе ВП ЦОС 1967ВЦ2Ф

Многокристальная сборка для цифровых приемо-передающих систем

Многокристальная сборка Flip-Chip

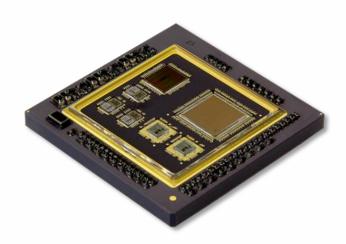


Многокристальная сборка для цифрового DRM-приемника


МИКРОСБОРКА ПО ОКР «ФЛИП-ЧИП»

В состав многокристальной сборки СБИС входят:

- Цифровой процессор обработки сигналов 1967BH028 – 4 шт.;
- РПЗУ Flash-типа 1636РР2У;
- Пассивные компоненты.



- Количество DSP-процессоров: 4;
 - Возможности расширения: до 2 микросборок (8 DSPпроцессоров) в кластере;
- Внешняя шина: DSP 32 бит адреса, 64 бит данных;
- Тактовая частота ядра DSP-процессоров: до 450 МГц;
- Количество LVDS LINK-портов: четыре 4-разрядных приемопередающих;
- DSP-процессоры связаны внутренними LINK-портами по схеме «каждый с каждым»;
- Пропускная способность LINK- порта 900 МБайт/с
- Объем РПЗУ: 16 Мбит (2 М х 8) бит;
- Время доступа по чтению FLASH-памяти: 60 нс;

МИКРОСБОРКА ПО ОКР «ОСВЕДОМЛЕННОСТЬ»

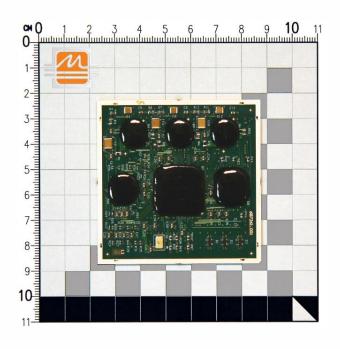
Многокристальная сборка для цифровых приемо-передающих систем «Осведомленность»

В состав сборки входят:

- Цифровой процессор обработки сигналов с СФ-блоками 1967ВН034;
- Аналого-цифровой преобразователь 5101HB015 – 2 шт.;
- РПЗУ Flash-типа 1636РР2У;
- Преобразователи постоянного напряжения 1310ПН1У – 3 шт.;

Технические параметры:

- Тактовая частота ядра DSP-процессора: до 300 МГц;
- Количество LVDS LINK-портов: два 8-разрядных передающих;
- Тактовая частота LINK-порта: до 300 МГц;
- Количество каналов АЦП: 2;
- Разрядность канала АЦП: 14 бит;
- Частота выборок АЦП: от 15 до 125 МГц;
- Объем РПЗУ: 16 Мбит (2 М х 8) бит;
- Время доступа по чтению FLASH-памяти: 60 нс;
- Частота опорного генератора: от 10 до 80 МГц;
- Встроенные контроллеры:2 UART, 5 SPI, 2 SSI, LCD-контроллер, VideoCam;


МИКРОСБОРКА ПО ОКР «ДУЭТ»

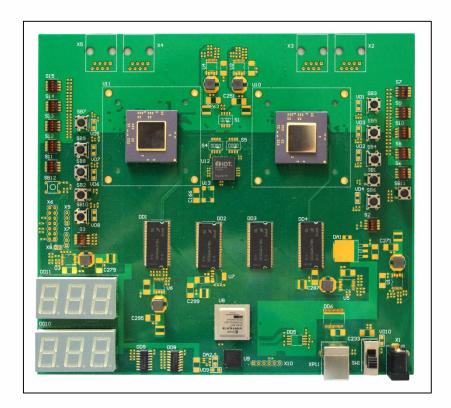
ОКР «Разработка технологии создания многокристальной сборки аналоговых радиочастотных и цифровых СБИС в «систему в корпусе» для применения в мобильных терминалах связи», шифр «Дуэт» Технические параметры:

В состав сборки входят:


- Цифровой процессор обработки сигналов с СФ-блоками 1967ВН034;
- Аналого-цифровой преобразователь 5101HB015 – 2 шт.;
- РПЗУ Flash-типа 1636РР2У;
- Преобразователи постоянного напряжения 1310ПН1У – 3 шт.;

МОДУЛИ НА ОСНОВЕ ИЗДЕЛИЙ ОКР «СЛОЖНОСТЬ-21»

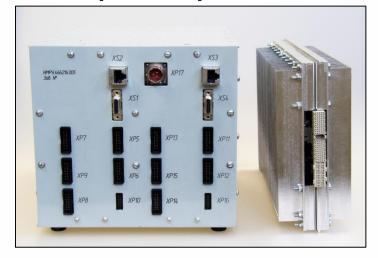
Высокоскоростной многокластерный интегрированный модуль цифровой обработки сигналов



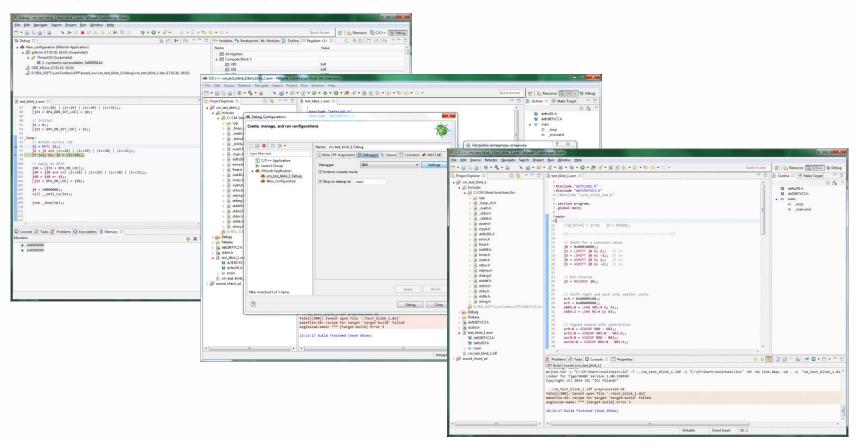
Технические характеристики интегрированного модуля:

- Количество кластеров: до 5;
- Количество DSP-процессоров в кластере: 4;
- Скорость обмена между DSP-процессорами в кластере 450 Мбайт/с;
- Скорость обмена между кластерами: 100 Мбайт/с;
- Потребляемая мощность: не более 150 Вт;
- Тактовая частота DSP процессора: 450 МГц;
- Суммарная производительность модуля: 100 ГФлопс;
- Поддерживаемые операционные системы хоста: OC Linux, OC Windows 7;
- Интерфейсы: PCI-Express, Ethernet 10/100;

Системы на основе ВП ЦОС 1967ВЦ2Ф

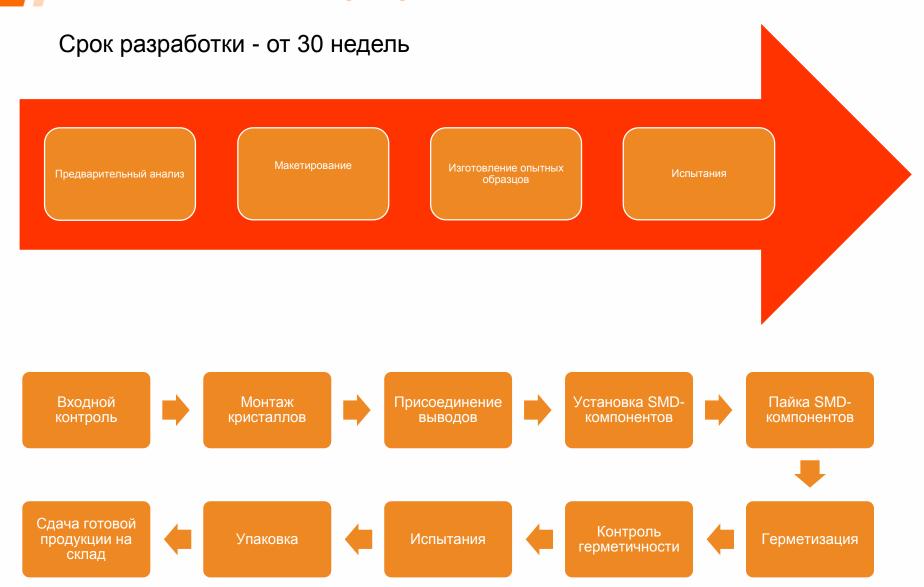

2-процессорный кластер

4-процессорный


20-процессорный

ДОПОЛНИТЕЛЬНОЕ ФИНАНСИРОВАНИЕ МИНИСТЕРСТВОМ ОБРАЗОВАНИЯ И НАУКИ

Для комплекта микросхем ОКР «Сложность 21», а также микросборок «Флип-Чип» и «Осведомленность» разработано ПО:


- Среда разработки и компилятор, аналог среды Visual DSP (Analog Devices)
- Операционная система реального времени

Разработка МСБ

Основные этапы разработки и изготовления МСБ

Технологические возможности

Монтаж кристаллов

Габариты кристаллов:

от 2х2 мм до 20х20 мм

Толщина кристаллов:

Габариты флип-чипов:

Точность монтажа:

Толщина:

200-750 мкм

Монтаж флип-чипов

от 5х5 до 40х40 мм

200-750 мкм

± 3 мкм

Сварка АІ проволокой

18-70 мкм Диаметр проволоки:

Минимальный шаг: 30 мкм

Сварка Аи проволокой

18-30 мкм Диаметр проволоки:

Минимальный шаг: 30 мкм

Монтаж SMD-компонентов

Минимальный типоразмер: 0201

Sn/Pb (63/37) или Sn/Pb (5/95) Тип припоя:

Герметизация шовно-роликовой сваркой

Толщина крышки в области сварки: 0,10-0,15 мм

от 5х5 мм до 50х50 мм Размер крышки:

124498, г. Москва, Зеленоград, Георгиевский пр-т, д. 5

Тел.: +7 (495) 981-54-33

Факс: +7 (495) 981-54-36

info@milandr.ru

WWW.MILANDR.RU